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Synthesis of steroidal saponins bearing an aromatic E ring
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Abstract—A facile synthetic approach toward the steroidal saponins bearing an aromatic E ring was developed starting from the
readily available spirostan saponin.
� 2007 Elsevier Ltd. All rights reserved.
Steroidal saponins constitute an extremely diverse and
abundant family of plant metabolites, with a broad
range of biological activities.1 The steroidal aglycones
are biosynthetically derived from the 30-carbon oxido-
squalene; removal of the three methyl groups of a lano-
stane precursor produces the 27-carbon steroidal
skeleton.2 Subsequent degradation may take place to
form steroids with less than 27-carbons. In 2003,
Nohara et al. disclosed from Solanum aethiopicum three
steroidal saponins having novel 29/30-carbon skele-
tons.3 These saponin compounds, named aethioside
A–C, bearing an additional aromatized E ring are
unprecedented. In 2005, an additional congener was
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Figure 1. The natural steroidal saponin aethioside C (1) and its retrosynthet
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identified from Paris polyphylla.4 The origin of the addi-
tional carbons and the bio-formation of the aromatized
E ring are yet to be known. Herein we report a facile
approach toward the synthesis of the steroidal saponins
bearing an aromatic E ring.

Recently, we have developed an effective approach for
the conversion of the ready available spirostan saponins
(e.g., 4; Fig. 1) into their furostan counterparts,5 where
an oxidative ring open of the spirostan E and F rings
was employed to provide a 16,22-di-one (e.g., 3) as a
versatile intermediate for further elaboration.5,6 We
envisioned the ready formation of the furan or
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Scheme 1. Reagents and conditions: (a) p-TsOH (cat.), Ac2O, reflux, 2 h, 65%; (b) Lawesson’s reagent, 4 Å MS, toluene, reflux, overnight, 78%.
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thiophene derivatives (e.g., 2) from the 16,22-di-one to
obtain the novel steroidal saponin derivatives with a het-
erocyclic E ring. Moreover, an oxidative Diels–Alder
cycloaddition of the furan/thiophene E ring with an
acetylene dienophile would generate a benzene E ring,
thus providing an access to the unusual aethioside-type
saponins.

We first tried the furan/thiophene ring formation on the
16,22-di-one-3,26-bisglycoside 3a, a precursor to the
furostan saponins (Scheme 1).5 Thus, reflux of 16,22-
di-one 3a in Ac2O in the presence of a catalytic amount
of p-toluenesulfonic acid for two hours afforded the
desired furan derivative 2a as a major product in 65%
isolated yield.7 However, this furan derivative decom-
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Scheme 2. Reagents and conditions: (a) Lawesson’s reagent, 4 Å MS, toluene
propiolate, BF3ÆEt2O, m-CPBA, 4 Å MS, toluene, �70 to 0 �C, 72% (for 7, ov
rt, overnight, 72% (for 9); 92% (for 10a/b); (d) TMSOTf (0.3 equiv), 4 Å M
posed quickly at storage or under conditions for the
subsequent Diels–Alder reaction. Alternatively, dione
3a was treated with Lawesson’s reagent in the presence
of 4 Å MS in toluene;8 the desired thiophene derivative
2b was obtained in a good 78% yield. Nevertheless, un-
der the oxidative Diels–Alder cycloaddition conditions
(m-CPBA, BF3ÆEt2O, dimethyl acetylenedicarboxylate,
or methyl propiolate), which have been well documented
by Mataka et al.,9 the thiophene derivative 2b proceeded
into a complex mixture.

The bulky 2,3,4,6-tetra-O-benzoyl-b-DD-glucopyranosyl
residue at the 26-OH that is proximal to the thiophene
ring in 2b might play a detrimental role in the above
reaction. Thus, we attempted the transformation from
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16,22-di-one-26-O-acetate 5, which was readily prepared
from the spirostan dioscin pivalate 4 in three steps and
68% yield (Scheme 2).5 Treatment of 16,22-di-one 5 with
Lawesson’s reagent provided the thiophene derivative 6
in an excellent 90% yield. Thiophene 6 was then applied
to the Mataka’s cycloaddition conditions, where the thi-
ophene ring was expected to be selectively oxidized at
low temperature with m-CPBA in the presence of BF3Æ
Et2O to yield the thiophene S-monoxide; subsequent
addition to a dienophile and extrusion of the resulting
O@S-bridge in the [4+2]-cycloadduct under the oxida-
tive surroundings should provide the desired benzene
derivative.9 Indeed, when dimethyl acetylenedicarboxy-
late was used as an dienophile and toluene as the solvent
(overnight), the corresponding benzene derivative 7 was
isolated in a good 72% yield. However, under similar
conditions, the reaction with methyl propiolate was
found much sluggish, providing a pair of the inseparable
regio-isomers (8a/b, 3:7) in 56% yield over a week of
reaction. Selective removal of the 26-O-acetyl group in
7 and 8a/b was achieved with NaOMe in MeOH/
CH2Cl2, providing 9 and 10a/b. Glycosylation of the
26-ols (9 and 10a/b) with 2,3,4,6-tetra-O-benzoyl-DD-
glucopyranosyl trichloroacetimidate 11 under the pro-
motion of TMSOTf afforded the desired bisglycosides
12 and 13a/b in about 80% yield.10 Final removal of
the ester groups on 12 and 13a/b, and the previous
compounds 2b, 6, 7, and 8a/b as well, with LiOH in a
mixture solvent of MeOH/THF/H2O (to compromise
the solubility), afforded novel steroidal saponins with a
benzene or thiophene E ring.

In summary, we have shown the ready conversion of a
spirostan saponin into the novel saponin derivatives
with an aromatized E ring, including the furan,
thiophene, and benzene ring. To achieve the effective
synthesis of the unusual aethioside-type saponins, the
regioselectivity in the Diels–Alder cycloaddition with
the E-thiophene-ring requires improvement. In addition,
diversity-oriented synthesis based on the present chemis-
try and the screening of the bioactivities of these com-
pounds are our undergoing projects.
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D

�19 (c 0.7, CHCl3); 1H NMR (300 MHz, CDCl3): d 8.00–
7.72 (m, 8H), 7.52–7.17 (m, 12H), 5.83 (t, 1H, J = 9.6 Hz),
5.61 (t, 1H, J = 9.9 Hz), 5.47 (t, 1H, J = 8.4 Hz), 5.37–5.20
(m, 3H), 5.19–5.11 (m, 2H), 5.09–4.97 (m, 2H), 4.93 (s,
1H), 4.81 (d, 1H, J = 1.5 Hz), 4.76 (d, 1H, J = 8.1 Hz),
4.70 (s, 1H), 4.61–4.50 (m, 2H), 4.49–4.30 (m, 3H),
4.25–4.15 (m, 1H), 4.14–4.03 (m, 1H), 3.92–3.80 (m,
1H), 3.76–3.63 (m, 3H), 3.63–3.46 (m, 2H), 3.40–3.30
(m, 1H), 2.45–2.28 (m, 5H), 2.28–2.10 (m, 2H), 2.00–1.80
(m, 5H), 1.73 (s, 3H), 0.97 (s, 3H), 0.82 (s, 3H), 0.74 (d,
3H, J = 6.3 Hz); 13C NMR (75 MHz, CDCl3): d 177.8,
177.1 (2C), 177.0, 176.8 (2C), 176.3, 176.2, 166.1, 165.8,
165.2, 165.1, 154.8, 153.1, 140.2, 136.6, 133.4, 133.2, 133.0
(2C), 129.8, 129.7, 129.7, 129.7, 129.6, 129.4, 128.9, 128.8,
128.4, 128.3, 128.2, 121.9, 111.4, 101.3, 99.3, 97.6, 97.1,
78.9, 76.1, 75.9, 75.0, 73.0, 72.1, 72.0, 71.9, 70.8, 70.4, 69.9,
69.8, 69.3, 69.1, 68.6, 68.1, 66.8, 63.3, 62.9, 60.5, 50.8, 49.4,
45.8, 41.0, 38.8, 38.8, 38.7, 38.6, 38.5, 37.1, 37.0, 35.4, 32.7,
32.3, 31.7, 30.6, 30.2, 29.8, 29.7, 29.5, 27.2, 27.1 (2C), 27.0
(3C), 26.6, 23.9, 20.4, 19.3, 18.0, 17.6, 17.2, 16.6, 8.7;
MALDI-HRMS m/z: [M+Na]+ calcd for C119H160O33Na,
2140.0734; found: 2140.0829. Compound 2b: ½a�25

D �16 (c
1.0, CHCl3); 1H NMR (300 MHz, CDCl3): d 7.98–7.73 (m,
8H), 7.50–7.16 (m, 12H), 5.83 (t, 1H, J = 9.0 Hz), 5.61 (t,
1H, J = 9.6 Hz), 5.47 (t, 1H, J = 9.3 Hz), 5.37–5.20 (m,
3H), 5.18–5.11 (m, 2H), 5.08–4.97 (m, 2H), 4.92 (s, 1H),
4.80 (s, 1H), 4.76 (d, 1H, J = 7.8 Hz), 4.70 (s, 1H), 4.61–
4.50 (m, 2H), 4.48–4.30 (m, 3H), 4.23–4.14 (m, 1H), 4.12–
4.04 (m, 1H), 3.92–3.80 (m, 1H), 3.76–3.62 (m, 3H), 3.62–
3.46 (m, 2H), 3.38–3.28 (m, 1H), 2.62–1.94 (m, 9H), 1.90
(s, 3H), 0.96 (s, 3H), 0.84 (s, 3H), 0.75 (d, 3H, J = 6.6 Hz);
13C NMR (75 MHz, CDCl3): d 177.7, 177.1, 176.8, 176.2
(2C), 166.1, 165.8, 165.2, 165.0, 155.7, 140.2, 139.7, 135.3,
133.4, 133.1, 133.0, 129.8, 129.7, 129.4, 128.8, 128.3, 128.2,
126.8, 122.0, 101.3, 99.2, 97.6, 97.1, 78.9, 77.3, 76.1, 75.9,
74.9, 73.0, 72.1, 72.0, 71.9, 70.8, 70.4, 69.9, 69.8, 69.3, 69.1,
68.6, 68.1, 66.8, 63.2, 62.9, 61.5, 50.7, 44.1, 38.8, 38.8, 38.7,
38.5, 37.1, 36.9, 35.1, 32.8, 31.5, 30.5, 29.8, 29.6, 29.5, 27.1,
27.1, 27.0, 26.9, 25.7, 23.7, 20.6, 19.3, 17.2, 17.1, 16.6, 11.7;
MALDI-HRMS m/z: [M+Na]+ calcd for C119H160-
O32SNa, 2156.0506; found: 2156.0489. Compound
6: ½a�25

D �34 (c 0.8, CHCl3); 1H NMR (300 MHz, CDCl3):
d 5.41–5.25 (m, 3H), 5.22–5.16 (m, 2H), 5.11–5.01 (m, 2H),
4.97 (s, 1H), 4.84 (s, 1H), 4.74 (s, 1H), 4.57 (d, 1H,
J = 7.5 Hz), 4.50–4.34 (m, 2H), 4.23 (dd, 1H, J = 6.0,
12.0 Hz), 3.98–3.84 (m, 3H), 3.78–3.50 (m, 4H), 2.76–2.56
(m, 3H), 2.48–2.16 (m, 4H), 2.05 (s, 3H), 2.03 (s, 3H), 1.00
(s, 3H), 0.96 (d, 3H, J = 6.3 Hz), 0.92 (s, 3H); 13C NMR
(75 MHz, CDCl3): d 177.7, 177.1, 177.0, 177.0, 176.8,
176.7, 176.2, 176.2, 171.1, 155.7, 140.1, 139.4, 135.6, 126.9,
121.9, 99.1, 97.6, 97.0, 78.8, 77.2, 76.0, 75.8, 71.9, 70.7,
70.3, 69.7, 69.2, 69.0, 69.0, 68.6, 68.0, 67.0, 63.1, 61.4, 50.6,
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44.2, 38.8, 38.7, 38.6, 38.4, 37.1, 36.8, 35.2, 34.9, 32.1, 31.5,
30.4, 29.8, 29.5, 27.1, 27.0 (2C), 26.9, 25.7, 20.9, 20.5, 19.2,
17.2, 17.1, 16.7, 11.8; MALDI-HRMS m/z: [M+Na]+

calcd for C87H136O24SNa, 1619.9035; found: 1619.9040.
Compound 7: ½a�25

D �54 (c 0.8, CHCl3); 1H NMR
(300 MHz, CDCl3): d 5.40 (d, 1H, J = 3.9 Hz), 5.36–5.26
(m, 2H), 5.23–5.16 (m, 2H), 5.12–5.02 (m, 2H), 4.97 (s,
1H), 4.85 (s, 1H), 4.74 (s, 1H), 4.57 (d, 1H, J = 7.5 Hz),
4.50–4.36 (m, 2H), 4.24 (dd, 1H, J = 5.4, 11.7 Hz), 4.00–
3.88 (m, 3H), 3.86 (s, 3H), 3.83 (s, 3H), 3.78–3.51 (m, 4H),
3.01 (dd, 1H, J = 6.1, 5.9 Hz), 2.33 (s, 3H), 2.06 (s, 3H),
1.02 (s, 3H), 1.00 (s, 3H), 0.99 (d, 3H, J = 7.2 Hz); 13C
NMR (75 MHz, CDCl3): d 177.8, 177.1, 177.1, 177.0,
176.8, 176.8, 176.3, 176.2, 171.2, 170.4, 167.6, 154.1, 142.4,
140.1, 137.1, 136.1, 132.4, 123.8, 122.0, 99.3, 97.6, 97.1,
79.0, 76.1, 75.9, 72.0, 70.8, 70.4, 69.8, 69.3, 69.1, 68.9, 68.7,
68.1, 66.8, 62.9, 56.5, 52.2, 52.0, 50.0, 47.2, 38.8, 38.8,
38.7, 38.5, 37.1, 36.7, 36.5, 34.1, 33.1, 32.7, 31.5, 30.7, 29.9,
29.7, 28.2, 27.2, 27.1, 27.1, 27.1, 27.0, 21.1, 20.9, 19.3, 17.3,
16.7, 16.2, 14.9; MALDI-HRMS m/z: calcd for [M+Na]+

C93H142O28Na, 1729.9580; found: 1729.9602. Compound
12: ½a�25

D �33 (c 0.3, CHCl3); 1H NMR (300 MHz, CDCl3):
d 8.05–7.80 (m, 8H), 7.58–7.24 (m, 12H), 5.90 (t, 1H,
J = 9.6 Hz), 5.69 (t, 1H, J = 9.6 Hz), 5.53 (t, 1H,
J = 9.0 Hz), 5.42 (d, 1H, J = 3.6 Hz), 5.39–5.28 (m, 2H),
5.25–5.19 (m, 2H), 5.15–5.05 (m, 2H), 5.00 (s, 1H), 4.88 (s,
1H), 4.84 (d, 1H, J = 7.8 Hz), 4.77 (s, 1H), 4.65 (dd, 1H,
J = 3.0, 12.3 Hz), 4.60 (d, 1H, J = 7.2 Hz), 4.56–4.38 (m,
3H), 4.26 (dd, 1H, J = 5.4, 12.0 Hz), 4.21–4.12 (m, 1H),
3.99–3.90 (m, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.79–3.54 (m,
4H), 3.42–3.34 (m,1H), 3.00 (dd, 1H, J = 6.6, 16.2 Hz),
2.21 (s, 3H), 1.04 (s, 3H), 0.96 (s, 3H), 0.84 (d, 3H,
J = 6.6 Hz); 13C NMR (75 MHz, CDCl3): d 177.7, 177.1,
177.0, 176.8 (2C), 176.3, 176.2, 170.4, 167.7, 166.1, 165.8,
165.2, 165.1, 153.8, 142.0, 140.1, 137.4, 136.4, 133.4, 133.2,
133.0, 133.0, 132.2, 129.8, 129.7, 129.6, 129.4, 128.9, 128.9,
128.4, 128.3, 128.3, 128.2, 123.6, 122.0, 101.5, 99.4, 97.4,
97.1, 79.0, 76.1, 75.9, 75.0, 73.0, 72.2, 72.1, 72.0, 70.9, 70.4,
69.9, 69.8, 69.4, 69.1, 68.7, 68.1, 66.8, 63.3, 63.0, 56.5, 52.1,
51.9, 50.1, 47.1, 38.8, 38.8, 38.7, 38.5, 37.1, 36.7, 36.4, 34.0,
33.8, 32.7, 31.5, 30.7, 29.9, 29.7, 28.4, 27.6, 27.2, 27.1 (3C),
27.0, 21.0, 19.3, 17.3, 16.6, 16.1, 14.8; MALDI-HRMS
m/z: [M+Na]+ calcd for C125H166O36Na, 2266.1051;
found: 2266.1071. Compound 8a/b: 1H NMR (300 MHz,
CDCl3): d 7.57 (s, 0.3H), 7.44 (s, 0.7H), 5.45–5.26 (m, 3H),
5.24–5.16 (m, 2H), 5.13–5.03 (m, 2H), 4.98 (s, 1H), 4.86 (s,
1H), 4.75 (s, 1H), 4.58 (d, 1H, J = 7.8 Hz), 4.52–4.36 (m,
2H), 4.24 (dd, 1H, J = 5.7, 12.0 Hz), 4.05–3.88 (m, 3H),
3.86 (s, 1H), 3.84 (s, 2H), 3.80–3.50 (m, 4H), 3.26 (dd,
0.3H, J = 6.0, 16.8 Hz), 2.31 (s, 3H), 2.05 (s, 3H), 1.05–
0.99 (m, 9H); MALDI-HRMS m/z: [M+Na]+ calcd for
C91H140O26Na, 1671.9525; found: 1671.9501. Compound
13a/b: 1H NMR (300 MHz, CDCl3): d 8.05–7.80 (m, 8H),
7.56–7.23 (m, 13H), 5.90 (t, 1H, J = 9.3 Hz), 5.69 (t, 1H,
J = 9.9 Hz), 5.54 (t, 1H, J = 7.8 Hz), 5.42 (br s, 1H), 5.38–
5.27 (m, 2H), 5.25–5.18 (m, 2H), 5.14–5.04 (m, 2H), 4.99
(s, 1H), 4.87 (s, 1H), 4.83 (d, 1H, J = 7.8 Hz), 4.77 (s, 1H),
4.69–4.56 (m, 2H), 4.55–4.38 (m, 3H), 4.25 (dd, 1H,
J = 5.1, 12.3 Hz), 4.21–4.12 (m, 1H), 3.99–3.89 (m, 1H),
3.86 (s, 1.3H), 3.81 (s, 1.7H), 3.79–3.53 (m, 4H), 3.49–3.36
(m, 1H), 3.27 (dd, 0.3H, J = 6.9, 16.8 Hz), 2.22 (s, 1.3H),
2.21 (s, 1.7H), 1.03 (s, 3H), 0.97 (s, 3H), 0.86 (m, 3H);
MALDI-HRMS m/z: [M+Na]+ calcd for C123H164O34Na,
2208.0996; found: 2208.0993.
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